q-Bernstein polynomials and Bézier curves
نویسندگان
چکیده
منابع مشابه
Tensor Product q-Bernstein Bézier Patches
Abstract An affine de Casteljau type algorithm to compute q−Bernstein Bézier curves is introduced and its intermediate points are obtained explicitly in two ways. Furthermore we define a tensor product patch, based on this algorithm, depending on two parameters. Degree elevation procedure is studied. The matrix representation of tensor product patch is given and we find the transformation matri...
متن کاملRational Bézier Curves Approximated by Bernstein-Jacobi Hybrid Polynomial Curves
In this paper, we propose a linear method for C approximation of rational Bézier curve with arbitrary degree polynomial curve. Based on weighted least-squares, the problem be converted to an approximation between two polynomial curves. Then applying Bernstein-Jacobi hybrid polynomials, we obtain the resulting curve. In order to reduce error, degree reduction method for Bézier curve is used. A e...
متن کاملOn a generalization of Bernstein polynomials and Bézier curves based on umbral calculus
In [20] a generalization of Bernstein polynomials and Bézier curves based on umbral calculus has been introduced. In the present paper we describe new geometric and algorithmic properties of this generalization including: (1) families of polynomials introduced by Stancu [19] and Goldman [12], i.e., families that include both Bernstein and Lagrange polynomial, are generalized in a new way, (2) a...
متن کاملOn multivariate polynomials in Bernstein-Bézier form and tensor algebra
The Bernstein-Bézier representation of polynomials is a very useful tool in computer aided geometric design. In this paper we make use of (multilinear) tensors to describe and manipulate multivariate polynomials in their Bernstein-Bézier form. As application we consider Hermite interpolation with polynomials and splines.
متن کاملBernstein-Bézier polynomials on spheres and sphere-like surfaces
In this paper we discuss a natural way to deene barycentric coordinates on general sphere-like surfaces. This leads to a theory of Bernstein-B ezier polynomials which parallels the familiar planar case. Our constructions are based on a study of homogeneous polynomials on trihedra in IR 3. The special case of Bernstein-B ezier polynomials on a sphere is considered in detail.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2003
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(02)00733-1